
 

Fifteenth International Congress of the Brazilian Geophysical Society 

 
A multiscale meshless parametrization for full waveform inversion 
Franciane Conceição Peters1 4, Edivaldo Figueiredo Fontes Junior2 4, Webe João Mansur1 4, Djalma Manoel Soares Filho3, 
Cid da Silva Garcia Monteiro1 4, Paulo Frederico Souza Lomeu1 4, Raphael Vieira Menezes de Souza1 4, 1Federal University 
of Rio de Janeiro/COPPE/PEC, Rio de Janeiro, Brazil. 2Rural Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. 
3CENPES-PETROBRAS, Rio de Janeiro, Brazil. 4LAMEMO – Modelling Methods in Engineering and Geophysics Laboratory 

 

Copyright 2017, SBGf - Sociedade Brasileira de Geofísica 

This paper was prepared for presentation during the 15th International Congress of the 
Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 31 July to 3 August, 2017. 

Contents of this paper were reviewed by the Technical Committee of the 15th 
International Congress of the Brazilian Geophysical Society and do not necessarily 
represent any position of the SBGf, its officers or members. Electronic reproduction or 
storage of any part of this paper for commercial purposes without the written consent 
of the Brazilian Geophysical Society is prohibited. 
 ____________________________________________________________________  

Abstract 

Full waveform inversion is a technique to recover images 
of the subsurface using data from a seismic survey. Since 
it is an ill-posed problem, one of the strategies to 
regularize the solution is a suitable choice of 
parameterization. Depending on the parameterization 
strategy, the solution is searched in a space with certain 
features that may be convenient to the problem. 
Furthermore, in general, a parameterization that can 
represent well the solution with a reduced number of 
parameters demands less computational effort, and the 
solution may be robust due to the limited number of 
degrees of freedom. Here the parameterization is based 
on a meshless technique that uses Wendland’s functions 
as basis functions to interpolation. Moreover, the spatial 
distribution of the unknowns is non-uniform, allowing 
automatically improving the quality of the image near the 
discontinuities of a velocity model. With some numerical 
experiments of acoustic inversion of synthetic data, we 
show that it is possible to represent complex velocity 
models with a reduced number of parameters if the basis 
functions are suitable. 

Introduction 

Full waveform inversion is a technique first stated in 80’s 
(Tarantola, 1984) to recover an image of the subsurface 
using data from a seismic survey, producing high-quality 
results. Among many aspects that influence inversion, like 
noise in data or the description of the physical system 
(Tarantola and Valette, 1982), a special attention should 
be given to the choice of parameters. Since regularization 
means to give preference to models that reflect prior 
knowledge or expectation, ensuring the convergence 
towards physically meaningful models (Fichtner, 2011), 
the choice of a set of parameters could be considered a 
kind of regularization strategy. 

The use of local functions for full waveform inversion is 
suitable since sharp contrasts in physical properties are 
expected. Moreover, the standard strategy is to define 
one parameter for each unknown of the numerical method 
used to solve the forward problem (Fichtner, 2011). 
Therefore, the spatial discretization of the forward 
problem depends on the stability criteria of the numerical 
method and the suitable representation of the physical 

properties. On the other hand, the parameterization 
depends on the resolution and the size of the structures 
that are expected to be resolvable. 

In this work we propose a parameterization methodology 
that deals with different degrees of freedom for the 
forward problem and inverse problem. This 
parameterization is based on a particular set of basis 
functions called Wendland’s functions (Wendland, 1995). 
These functions can be used to generate 2D and 3D 
models with specific continuity classes. Each basis 
function has one basis point and to each one, there is an 
associated parameter. The set of basis points is 
distributed uniformly or non-uniformly in the model, as a 
cloud of points, which allows increasing the resolution in 
regions of interest. Moreover, in order to be able to 
represent the physical properties, the region influenced by 
each basis function must be larger than in the standard 
block parameterization.  

In order to avoid excessive smoothing near discontinuities 
of the physical model, we suggest a non-uniformly basis 
points distribution. Such strategy is based on the “spring 
analogy” (Kazeroni and Afshar, 2015) and tries to 
concentrate more unknowns near regions of interest. 

Numerical experiments demonstrate that the proposed 
parameterization is able to represent complex models of 
physical properties and, in the context of multiscale 
approach, could provide images as good as the images 
obtained with the standard strategy. 

Method 

Our main objective is to show that it is possible to 
generate suitable images using a number as small as 
possible of parameters which could lead to a reduction of 
the required memory and the number of operations 
demanded, an important feature for seismic inversion on 
3D imaging and multiparameter inversion. Another feature 
is to increase the robustness of the inversion 
methodology because the use of a small number of 
degrees of freedom can be a regularization strategy. On 
the other hand, the use of a limited number of parameters 
requires interpolation to generate velocity models, which 
can excessively smooth the interfaces between regions 
with different physical properties. 

Another point is related to the discretization required by 
the numerical method to satisfy its stability criteria. Very 
often, such discretization is finer than that required by the 
image resolution. 

Using a meshless parameterization, the same parameters 
can be used to generate models of structured or 
unstructured meshes for different numerical methods: 
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Finite Differences (Hustedt et al., 2004), Continuous or 
Discontinuous Finite Elements (Brossier et al., 2009) and 
coupled methods (Mansur et al., 2016). Moreover, the 
methodology is suitable to provide focus in a particular 
region even when the numerical method employs uniform 
meshes. 

Each parameter is related to a basis point and those are 
distributed all over the model uniformly or non-uniformly. 
As mentioned, interpolation tends to smooth the 
interfaces or discontinuities of the velocity model. 
However, if we approximate two basis points to the 
discontinuity, the smoothing is reduced and the image 
near the interface becomes better than when the points 
are far from the discontinuity. So, here we propose a 
methodology to spread the basis points based on an 
automatic identification of the interfaces concentrating 
more basis points near the interfaces and reducing the 
density of basis points over homogeneous areas based 
on the “spring analogy method.” 

In order to analyze the benefits of the non-uniform 
meshless parameterization, we compare two different 
strategies, summarized as follows: 

• Blocks: The classical constant by parts 
parameterization, in which a different velocity value is 
associated to each pixel of the image; 

• Meshless: The parameterization is based on 
interpolation of Wendland’s functions with basis points 
distributed by the spring analogy, with more points close 
to the interfaces.  

The number of parameters affects the quality of the 
solution. The interpolation of a reduced number of 
parameters is more likely to generate smooth models. 
The excessive smoothing must be avoided because FWI 
has the potential to recover a high-resolution image, 
revealing smallest detectable structures. 

To minimize the smoothing produced by interpolation, we 
propose the use of a non-uniform distribution of the basis 
points clustering them near the discontinuities to avoid 
excessive smoothing. The non-uniformly distribution 
concentrates more basis points near the discontinuity or 
where the gradient of the function varies abruptly.  

Since a non-uniform distribution of the basis points gives 
better approximations than a uniform distribution, the 
question is: How to compute the ideal position (or a better 
position) of the points, if the velocity model is not known 
in the context of seismic inversion? The method we are 
proposing uses the current velocity model to generate an 
auxiliary image that represents the possible 
discontinuities of the model. Then, from a uniform cloud of 
basis points, the spring analogy is applied to find the new 
positions, concentrating more points near the 
discontinuities to reduce smoothing and improving the 
velocity model. 

At the end of the minimization process, when the imaging 
frequency changes, we use the current image to draw 
automatically the interfaces. After that, we consider the 
existence of springs linking each basis point to its 
neighbors. If a spring crosses an interface, we assume 
that its stiffness is greater than the stiffness of springs 

that do not cross interfaces. So, each basis point is 
subjected to a system of forces, depending on the 
stiffness and lengths of the springs connected to it. In 
order to reach the equilibrium of forces, the length of each 
spring has to change, leading to the new distribution of 
basis points. In other words, two points linked by a 
segment that crosses an interface will approximate one to 
the other. If not, one will depart from the other. 

Thus, at the end of the inversion procedure, the model 
computed with this strategy is supposed to be better than 
the one computed without the spring analogy, since the 
former was developed to minimize smoothing near the 
interfaces. 

The use of the spring analogy gives a system of linear 
equations that represents the equilibrium of forces at all 
basis points. The size of the system is the number of 
basis points or unknowns of the inverse problem. 

In this work we adopt an adaptive strategy in order to 
increase the number of parameters as the imaging 
frequency increases. In this point we apply the spring 
analogy. Since we are solving the problem with a 
sequential multiscale approach, we have to be careful 
when the number of parameters increases. The image 
obtained with the greater number of parameters must be 
similar to the old one. In order to do that, after the final 
distribution of basis points, we have to find the values of 
parameters that best fit the old image. It is done by 
solving the normal equations, a linear system with size 
equal to the number of basis points. As we will see, the 
proposed methodology behaves well when the adaptive 
strategy is applied due to the smoothness. The same 
does not happen with the block parameterization due to 
the lack of flexibility. 

 

Results 

Part A 

In order to test if the meshless parameterization is able to 
fit complex velocity models, we performed 22 numerical 
experiments. We have used 11 different numbers of 
parameters and we have compared the images obtained 
with blocks parameterization and the proposed meshless 
parameterization. In each experiment, the algorithm looks 
for the values of parameters that best fit the true velocity 
model. In all experiments, the true velocity model was 
created based on a section of the 3D Salt Dome model, 
Figure 1(a), with 338x160 samples.  

Figure 1 shows the true velocity model and the images 
obtained with both methodologies with four different 
discretization levels. It is interesting to observe that a 
small number of parameters gives excessively smooth 
images if the meshless parameterization is used. It is 
expected because of the properties of the function we use 
to interpolate the solution. On the other hand, the blocks 
parameterization gives images with visible squares, even 
for the greatest number of parameters we have used. 
This causes difficulty to fit the interfaces and greater 
errors than the meshless strategy. 
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Figure 1 – The true model (a) and eight images obtained with blocks and meshless parameterization for different 
discretization levels.    

 

Each obtained image was compared to the true model, 
and we have computed the average error and the 
maximum error. Since, in general, the maximum error 
occurs along the interface between regions with different 
velocities, we can consider better the method that gives 
smaller maximum error. Figure 2 shows the maximum 
error for each discretization level. In this figure it is 

possible to see that smaller the number of parameters 
greater the error, showing the difficulty to fit a complex 
model using a small number of parameters, as expected. 
The same figure shows that for each discretization level, 
the proposed parameterization gives better results than 
the traditional one, with blocks. The true model could be 
perfectly fitted with 54.080 parameters (338x160) and we
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have used less than 3% of this number to test both 
methodologies. 

 

Figure 2 – The value of maximum errors for each image 
obtained for 11 discretization levels using two 
parameterization strategies: blocks and meshless. 

 

Part B 

We have performed three inversion experiments to verify 
the behavior of the proposed methodology. 

First, we have used the true model, the same used in Part 
A, to generate synthetic seismic data using a finite 
differences scheme to solve the acoustic wave equation. 
We have simulated a “split-spread” survey with 82 shots 
and 168 receivers. The initial model used as input to the 
inversion algorithm is the true model after smoothing and 
extraction of the salt dome. The multiscale approach was 
adopted with the following imaging frequencies: 1.5, 3.0, 
4.5, 6.0, 6.9, 7.8, 8.7, 9.6, 10.5, 11.4, 12.3, 13.2, 14.1, 
15.0, and 15.9Hz. For each frequency, 20 iterations of the 
L-BFGS algorithm were performed. The synthetic seismic 
data were inverted using three strategies: 

 

 With blocks parameterization using the number 
of parameters that could fit the true model 
(338x111), here called standard strategy; 

 With blocks parameterization starting with 260 
(24x11) parameters, increasing the refinement 
as the frequency increases, and finishing with 
6532 (142x46) parameters; 

 With the proposed meshless parameterization, 
starting with 260 and finishing with 6532 
parameters.   

It is important to emphasize that a layer composed of 
water with 700 meters is considered known by the 
inversion algorithm. Figure 3(a) shows the average error 
between the inverted model and the true model in m/s for 
each iteration and Figure 3(b) shows the data misfit.  

Figure 4 shows the true model, the initial model, and the 
images obtained by inversion of synthetic seismic data 
after 300 iterations.  

 

Figure 3 – The average error of the images obtained with 
three parameterization strategies (a) and the misfit (b) at 
each iteration. 

It is possible to see, in Figure 3, that the standard strategy 
gives the best solution since it has the enough number of 
parameters to fit the true model. However, the solution is 
not exact because the number of iterations was limited 
and the forward model was different from that one used to 
generate synthetic data.  Furthermore, the meshless 
parameterization was able to fit the initial model as well 
as the standard parameterization, while the block 
parameterization was not.  

The discontinuities of the curves in Figure 3 represent the 
change of imaging frequency. Regarding the transition 
between frequencies, the blocks parameterization was 
more affected by the refinement strategy. While the model 
is smooth, up to 150 iterations, the meshless 
parameterization was better than the standard one. After 
that, due to the reduced number of parameters, the 
meshless parameterization was not as good as the 
standard one. With the reduced number of parameters, 
the meshless parameterization can be considered 
superior to the blocks strategy.  
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Figure 4 – The true model (a) and the results of inversion 
with the standard strategy (b), the blocks 
parameterization (c), and the proposed meshless 
parameterization(d). 

In Figure 4, it is possible to note that the image obtained 
with the meshless parameterization is similar to the image 
obtained with the standard parameterization. The image 
obtained with blocks parameterization was not able to fit 
the shape of the top of the salt dome due to the reduced 
number of parameters and lack of flexibility. 

 

Conclusions 

The results show that the proposed meshless 
parameterization has the potential to represent complex 
velocity models with a reduced number of parameters. 
Additionally, the methodology we have presented to 
distribute the basis points non-uniformly was tested and 
can be considered suitable, allowing better images by 
controlling the distribution of basis points near 
discontinuities. 

Depending on the inverse problem, reduced number of 
parameters leads to a substantial reduction in the 
computational effort to compute the gradient, 
compensating the additional computational efforts with 
the interpolation and the distribution of the basis points. 
So, the reduced model space presented here is suitable 
to solve problems in which the computational cost to 
solve them is proportional to the number of parameters.. 
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